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The electro-optic response of a surface-stabilized ferroelectric liquid crystal (SSFLC) cell is deter-
mined largely by the dynamics of polarization reversal at the chevron interface. This process involves
the nucleation, growth, and ultimate coalescence of polarization reversal domains. These domains
are generally faceted, being either polygonal or characteristically boat shaped. We have performed
computer simulations in two dimensions (2D) of field-driven domain growth at the chevron interface
in SSFLCs. By including elastic anisotropy and the orientational binding of the chevron in the
equation of motion, we get anisotropic domain growth and, for a range of applied field strengths E,
partially faceted domain shapes. The measured growth rates have the same field dependence as is
seen experimentally, the domain area increasing as A o (Et)?. We have also developed an analytical
algorithm similar to the Wulff construction for calculating the spatial evolution of 2D domains as a
function of time for arbitrary starting shapes. In the present case of ferroelectric domain growth,
we can derive full 2D domain shapes with curved walls from the directional variation of the velocity
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of planar walls as measured by computer simulations in only 1D.

PACS number(s): 61.30.Cz, 61.30.Gd, 83.70.Jr, 77.80.Fm

I. INTRODUCTION

Chiral molecules in any tilted smectic liquid crystal
phase are ferroelectric, with a spontaneous polarization
P oriented perpendicular to both the layer normal 2, and
the molecular director fi [1]. The director is tilted from
the layer normal by a temperature-dependent angle )¢
(typically ~ 20°) and the azimuthal orientation of the
polarization is given by ¢(r). When prepared in the
smectic-C' (Sm-C) phase with the layers oriented more or
less perpendicular to closely spaced, conductive bounding
plates (the “surface-stabilized” geometry), such materi-
als form the basis of fast electro-optic devices [2].

The optical response of these surface-stabilized ferro-
electric liquid crystals (SSFLCs) is in general a complex
function of the cell thickness, the chemistry of the cell
surfaces, and the material parameters of the liquid crystal
itself. In cells with chevron layer structure (as sketched in
Fig. 1), the chevron interface (which is typically near the
midplane of the cell) provides an additional internal sur-
face with an associated orientational energy anisotropy
that controls the director orientation in the interior of
the cell [3].

The direction of the ferroelectric polarization at the
chevron interface can be switched between up and down
by relatively weak fields (E ~ a few V/um) [4,5]. Since
the molecules in the rest of the cell are elastically coupled
to those at the chevron interface, this in turn induces a
reorientation in the bulk that results in a net change in
the average optical axis orientation of the cell. When the
cell is suitably oriented between crossed polarizers, this
causes a large change in the optical transmission. Further
increasing the applied field (E 2 10 V/um) causes any
hitherto unswitched cell surface to reorient also, resulting
in a small additional change in transmission.
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The optical response of many SSFLCs is thus deter-
mined primarily by the switching at the chevron inter-
face [5]. This process typically involves the nucleation
and subsequent growth of many individual, switched do-
mains of high optical contrast. In the two-dimensional
(2D) view afforded by the polarizing microscope, these
domains are polygonal in low applied fields and become
almost elliptical in high fields [6,7]. Some typical domain
shapes are shown in Fig. 2. Understanding the dynam-
ics of the nucleation and growth of these domains is an
important part of being able to model and predict the
electro-optic response of chevron SSFLC devices.

In this paper, we present a 2D model of domain
growth at the chevron interface. The key features of this
model are the explicit inclusion of a chevron potential
(which prevents director reorientation except at domain
boundaries) and of elastic anisotropy (which results in
anisotropic growth). Numerical solution of the equation
of motion for this system allows us to model the tem-
poral evolution of switched domains as a function of ap-
plied field. When the equation of motion is reduced to
1D and solved in an anisotropic space, we can recreate
2D domain shapes by implementing a mathematical al-
gorithm analogous to the Wulff construction used to find
the equilibrium shapes of crystals. We can compare the
calculated forms and growth rates of model domains with
those observed in SSFLC cells. The results indicate that
the ferroelectric Sm-C phase is of lower symmetry than
the model employed here. However, they also show that
3D domain shapes with curved walls can be obtained by
combining the results of 1D or 2D simulations of planar
walls in a 3D liquid crystal medium.

In Sec. Il we will summarize the basic experimental
observations on switching in chevron SSFLCs to date.
In Sec. III we present a theoretical description of direc-
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FIG. 1. Geometry of chevron SSFLC cell. The smectic lay-
ers are tilted an angle +6 from the cell normal, the change
in their orientation typically occurring near the middle of
the cell. The orientational binding potential at this planar
chevron interface stabilizes two polarization states P, up and
down. The corresponding director orientations are indicated
in the lower part of the figure by the filled circles (o) and their
projections onto the smectic layer planes by the c director (c).
A generic polygonal domain is shown growing at the chevron
interface.

tor orientation dynamics in SSFLCs and motivate a par-
ticular 2D formulation applicable to chevron cells. We
then show that the equation of motion can be reduced
to 1D for the case of planar domain walls and illustrate,
in Sec. IV, how 1D solutions along discrete directions in
space can be combined to recreate complete 2D domain
shapes. The results of selected simulations are presented
in Sec. V, for both the 2D and 1D models. We conclude
in Sec. VI by comparing the domain growth in our model
system with that observed experimentally.

II. EXPERIMENTAL BACKGROUND

The morphology of ferroelectric domains in high-speed
switching experiments was first observed by Handschy
and Clark using stroboscopic microscopy [6]. They re-
ported seeing approximately elliptical domains extended
along the layer direction, whose growth they originally at-
tributed to switching at the cell surfaces [8]. Ouchi et al.
pointed out that slow voltage ramps generate domains
which grow with characteristically asymmetric “speed-
boat” forms. On the basis of microscopic observations
of nonuniform states in SSFLCs, they also proposed that
the domain walls were director field disclinations located
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in the interior of the cell rather than at the bounding
glass plates [9]. The origin of these disclinations was not
understood at that time.

Early 2D numerical simulations of director reorienta-
tion based on Handschy and Clark’s model were carried
out by Nonaka et al. [10] and by Yamada et al. [11]. By
considering ferroelectric dipoles arranged in a sheet ori-
ented perpendicular to the glass plates of their model

(b)

FIG. 2. Domain shapes in chevron SSFLC cells: (a)
low-voltage switching in a 4 pum cell of the Merck material
ZLI1-3654. The domains are boat shaped, with gently rounded
sides. The applied voltage is about 20 mV. (b) High-voltage
switching in a 2 pm cell of the Displaytech mixture W7-W82.
The picture, taken stroboscopically, shows rather symmet-
ric domains growing about 3 ms after a field reversal. The
applied voltage is 12 V. The layer normal is in both cases
approximately vertical.
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cell, they were able to simulate the growth of surface do-
mains in cells with bookshelf layer geometry. Ishibashi
and co-workers also made stroboscopic measurements of
switching in SSFLC cells and analyzed the nucleation and
growth of domains using the Avrami model [12].

After the discovery of chevron layer structure in SS-
FLCs [3], it was realized that the low-voltage switching
which gives rise to boat domains, and which is in fact
responsible for the main change in optical transmission
in these cells, was due to director reorientation at the
chevron interface. In a model which reconciled their x-
ray data with Ouchi’s optical observations, Clark and
Rieker proposed that the molecular orientation at the
chevron interface is controlled by a surface potential that
minimizes changes in the director orientation across this
interface [13]. This internal boundary condition is sat-
isfied in a typical cell when the director at the chevron
interface is oriented parallel to the interface (and hence
also parallel to the bounding glass plates). Since this
condition is met at two different positions on the Sm-C
tilt cone, SSFLCs in the absence of applied field sup-
port two distinct, coexisting polarization states, which
we call “up” and “down.” The geometry of chevron cells
is shown in Fig. 1.

It was originally pointed out by Ouchi et al. that
boat domains growing on opposite sides of a “zigzag”
wall point in opposite directions [9]. It is now firmly
established that zigzag defects serve to invert the di-
rection of the chevron [13] and that the boat domains
form during a field-driven transition between two sta-
ble, nonuniform director states, “(half-splayed) up” and
“(half-splayed) down” [4]. The present model of chevron
switching is illustrated in Fig. 3, which shows a SSFLC
cell in which a down domain, in which the director field
above the chevron interface is uniform and that below
splayed, is growing in an up environment. Optical trans-
mission spectrometry experiments have confirmed that
in typical SSFLC cells the low-voltage chevron switching
accounts for most of the obtainable contrast, the addi-
tional change in transmission obtained by increasing the
electric field enough to reorient one of the cell surfaces
being relatively small [5].

Further high-speed stroboscopic measurements of do-
main nucleation and growth dynamics in chevron SS-
FLCs were recently reported by Xue and Clark [7]. Their
experiments studied the crossover from “heterogeneous”
(defect-generated, repeatable) nucleation at low volt-
ages to “homogeneous” (spatially random) nucleation
at higher voltages originally observed by Handschy and
Clark [6]. They measured the growth dynamics at dif-
ferent temperatures and confirmed that the mean size of
any domain increases approximately linearly with time
((d) o t), and that the domain wall velocity is linear
in the applied field (v o FE) and is constant in time.
They found that the “boat” domains are typically ir-
regular hexagons or pentagons extended along the smec-
tic layers, whose front-back (“bow-stern”) asymmetry is
reduced with increasing field strength. They also sug-
gested that electro-hydrodynamic backflow effects might
account for this asymmetry.
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FIG. 3. Domain switching at the chevron interface. A
down domain is shown growing in an up environment, the
arrows representing the polarization field P. The upper dia-
gram is a transverse view of the cell with the chevron domain
boundaries indicated by filled circles (o). The lower diagram
shows a cut through the tilted smectic layers just above the
chevron interface. This is the 2D space modeled in the nu-
merical simulations.

III. THEORY

The dynamics of director reorientation in SSFLC cells
can be described by the equation of motion derived from
an appropriate Landau-de Gennes free-energy functional
[8]. For a uniformly layered ferroelectric liquid crystal,
the free-energy density f may (if we ignore flow effects)
be written

f= KzBS( Vey®)? +ﬁ(vz¢“q)2iPECOS($COS¢
—[AeE? sin® (1) /87] sin? ¢ — — cos x, (1)

where Kgs and Kr are the Frank elastic constants for
distortions of the director field, respectively, within and
normal to the smectic layers (i.e., bend-splay vs twist of
P), Ac is the dielectric anisotropy, g is the wave vector of
the spontaneous ferroelectric helix, and § is the smectic
layer tilt angle.

The last term describes orientational binding at the
chevron interface: 4 has the dimensions of a surface en-
ergy anisotropy per unit area, and £ denotes the decay
length of the orientational binding potential. x is the an-
gle subtended between the directors immediately above
and below the chevron interface [13], with x given im-
plicitly by
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cos x = cos 26 cos? 9
+ sin 24 sin ¢ cos(1ho) (sin g — sing_)
+ cos 28 sin? 9o sin ¢ sin
+sin? 4o cos ¢ cos ¢_ .

The angles ¢4 and ¢_ refer to the polarization azimuth,
respectively, just above and just below the chevron in-
terface. Earlier numerical solutions of reorientation in
chevron SSFLCs performed in 1D (along the cell normal)
[4] showed that when the molecules on either side of the
chevron interface reorient in an applied field, they always
remain mirror images of each other, i.e., ¢, = —¢_. This
means that the angle x can be determined uniquely from
the director orientation ¢ on one side of the interface
only. The chevron binding potential then has the shape
shown in Fig. 4, with the minima corresponding to the
up and down states satisfying sin ¢ = tan(é)/tan . For
a smectic tilt angle ¥o = 22° and layer tilt § = 18°,
the equilibrium polarization orientations at zero field are
¢ ~ 54° and ¢ =~ 126°.

In the ferroelectric (xPFE cos¢) term, the + sign
means the field favors an up orientation (¢ = w) and — fa-
vors down (¢ = 0). We have neglected variations in the
tilt angle, flexoelectricity, the self-field of the ferroelec-
tric polarization, and inertial effects. The applicability
of these approximations is discussed elsewhere [8,14,15].

Variation of Eq. (1) gives the equation of motion,
which, with the inclusion of a viscosity n that damps
azimuthal motion of the director on the tilt cone, is

7’¢t = KBS(¢:M: + ¢yy) + KT¢22 + PE COSJSin¢

+[A€E ? sin® (1) /4] sin ¢ cos ¢ — 79 cos X.

We have sought in the present work to simulate and
understand the domain growth dynamics observed in the
stroboscopic experiments. Although a complete descrip-
tion of chevron switching would necessarily involve a 3D
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FIG. 4. Chevron binding potential (W4 ~ —cosx). The
energy minima corresponding to the down and up polarization
states are located symmetrically about ¢ = m /2.
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model, we treat the director field as two dimensional in
the plane of the chevron interface. The motivation for
this can be seen from Fig. 3. Here a down field has been
applied to a down domain nucleated at the chevron inter-
face. Only the molecules at the chevron interface switch
because the polar interactions at the solid-FLC interface
are too strong to allow switching there. Once the director
has switched at the chevron interface, three regions can
be distinguished: mostly down, mostly up, and the walls.
In the nonequilibrium steady state, these structures are
internally time independent, with the walls moving to
increase the down area. This problem can be viewed as
effectively 2D, with the field variable being the director
orientation on the chevron interface. In this case, where
the applied electric field is strong enough to switch the
polarization at the chevron interface but not at the cell
surfaces, the optical transmission of the SSFLC cell is
dominated by the orientation at the chevron interface.

We therefore ignore director field variations in the %
(cell-normal) direction and consider a 2D dipole sheet
in the y-z plane, centered on the chevron interface. We
assume that the chevron is in the midplane of a cell of
thickness d and further simplify the problem by consider-
ing the orientation just above the chevron interface only.

Letting ¢, = 0, if we divide Eq. (2) throughout by
PE, and scale time by 7 = n/PE and distance by the
correlation length ¢ = (Kps/PE)'/2, we obtain the di-
mensionless equation

Kr

¢t = Pyy + ——¢,, £ cosdsing + asingcos ¢
Kps

—)\45% cosx , (3)
where y/¢ — y, 2/ — 2z, and Ay = ~4/({PE).
The dielectric interaction strength scales with a =
[A€E sin®(v0) /4mP]: for the moderate field strengths
considered in our simulations, however, the dielectric
contribution would be negligible and so we shall omit
it entirely, setting a = 0.

The ¢ dependence of the chevron term is given explic-
itly by

0
£y cos X = sin 26 sin 2¢pg cos ¢— (cos 26 +1) sin? 1o sin 2¢ .

It is evident from this expression that Eq. (3) can not be
reduced to the form of a diffusive (double) sine-Gordon
equation, which precludes an easy prediction of the do-
main wall dynamics in this system [15]. In the absence of
an electric field, the up and down polarization states are
equally stable. In a down applied field, dipoles in both
states are affected by an electrical torque and tend to
align more closely with the field. When switching occurs
via domain growth, the up state directors are prevented
from reorienting en masse by the chevron binding poten-
tial and reorientation can only be mediated by the motion
of domain walls. Only in electric fields large enough to
overcome the binding potential directly would we expect
a homogeneous reorientation of the director field that re-
quires no domain wall motion.

Finally, we note that the elastic anisotropy inherent in
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the equation of motion can be parametrized in terms of
an angle B describing a set of axes (v,w) rotated from
(y, 2), to yield the equation

b = (sm B+ IZ - cos? ﬂ) buw

+sin(20) (% - 1) Dvw

+ (cos B+ If sin ﬂ) Dov
+sin¢gcosd — /\48¢cosx. (4)

This formulation allows us to solve the 2D equation of
motion for the special case of a 1D domain wall propa-
gating along an arbitrary direction in the y-z plane (e.g.,
along the v axis, so that ¢y = Pww = 0).

We see from Eq. (4) that the growth of ferroelectric
domains in our model should depend on two parame-
ters only: (1) the ratio of the Frank elastic constants
Kr/Kps and (2) the ratio of chevron to electrical po-
tential energy given by A4.

The decay length of the chevron potential is set in our
simulations to £ = min[¢, d/2], so that the chevron bind-
ing acts in a slab of effective thickness £ that increases
with decreasing field strength but can never exceed d/2.

We have chosen to explore two complementary ap-
proaches to simulating domain growth in SSFLCs. First,
we have performed simulations in 2D by solving Eq. (3),
which enables us to observe directly the evolution of a sin-
gle domain for a variety of initial starting shapes and ap-
plied field strengths. Second, we have numerically solved
the 1D Eq. (4) to find the steady-state profile and wave
speed v(0) of a planar up-down domain wall as a function
of its orientation. We have developed a general mathe-
matical algorithm analogous to the Wulff construction
method of deriving crystal shapes from the polar plots of
surface energies that allows us to calculate steady-state
2D LC domain shapes from the composite 1D velocity
profile v(3). The formalism is summarized in the follow-
ing section.

We approximated Eqs. (3) and (4) using the semi-
implicit Crank-Nicholson finite difference scheme, with
the integrations in time being performed in alternating
directions [16]. Elastic boundary conditions were im-
posed [8]. We typically used 101 x 101 mesh points in
2D and 151 mesh points for the 1D simulations, which
were carried out on Silicon Graphics computers. The
simulation results appear in Sec. V.

IV. DYNAMIC DOMAIN SHAPE CALCULATION

The problem of determining the equilibrium shape of
a crystal growing in 2D is classic. Early this century,
Wulff [17] developed a geometric construction that gives
the equilibrium shape of crystals with known surface ten-
sion anisotropy, (). Facets in the crystal shape corre-
spond to directions of local minima in v(8). Crystals
for which () contains several, sufficiently deep min-
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ima may end up being entirely faceted (i.e., polygonal).
Herring pointed out that even liquid crystals with no po-
sitional order but possessing orientational order could ex-
hibit domain shapes with sharp edges or corners [18]. Re-
cently, Rudnick and Bruinsma have developed a formal-
ism for calculating domain shapes of liquid-crystal-like
systems when the total energy depends not only on the
surface orientations but also on the internal structure of
the domain [19]. They find that when the internal struc-
ture is described by a 2D XY model then cusps ought to
be a generic feature of the resulting domain shapes.

We have developed a general algorithm for calculating
the steady-state shape of domains using the normal ve-
locity profile v (3) of the domain boundaries rather than
the surface energy. The analysis is consistent with the ex-
perimental observation that the mean dimension of any
domain in chevron cells increases linearly with time [7].
This implies that under equilibrium growth conditions
the domain shape at an arbitrary time t3 is geometri-
cally similar to the shape at any earlier times ¢; or t,.
The location of the domain boundary is therefore given
by the relation

(0, t) = ‘U(g)t ) (5)
where 0 is the angle between £ and the y axis as shown
in Fig. 5. Under conditions of stable growth, the veloc-
ity profile v, (83) is independent of time and the domain

wall velocity v(0) is independent of r along any given
direction.

V,(B)
t3

to r

Y

FIG. 5. Geometry of domain shape calculations. Part of
a curved domain wall () is shown at different times ¢i, t2,
and t3. The radial domain wall velocity v(#) is constant for a
given 6. The local orientation of the domain wall along any
radius vector is also constant in time so that the growth is
self-similar. The construction relates the radial velocity to
the normal component of the velocity v, (3), the latter being
equal to the velocity of an infinite planar wall with the same
orientation. The lower part of the figure shows a hypothetical
five-sided boat domain growing in self-similar fashion: the
pointed bow moves fastest and is furthest from the “origin”
O.
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We will show that if we know v, (3) for any given sys-
tem, we can find the equilibrium domain shape using
Eq. (5). We can see, from the geometric construction in
Fig. 5, that the radial growth velocity has the form

vy (ﬁ ) (6)

v(9) = cos(B—0)

When v, () is known, the domain shape problem re-
duces to finding the angle 6 as a function of 3. This can
be done in a straightforward way. Rather than perform-
ing a conventional Euler-Lagrange minimization of the
free energy [17-19], we perform partial differentiations of
Eq. (6), which yield

1 B'UL(,B) — _tan _ a
'UJ._(,B) aﬂ - t (:3 0)5 (7 )
1 v(0)

Combining Egs. (5)—(7) enables us to calculate stable do-
main shapes from v, (8). An extension of the method
to the case of non-steady-state growth also allows us to
compute the domain shape as a function of time for ar-
bitrary starting shapes [20]. The method is quite general
and applies both to conventional crystal growth and to
liquid-crystal domain evolution.

We have used the 1D velocity profiles for ferroelectric
domain growth determined by solving Eq. (4) to com-
pute the expected 2D equilibrium shapes. The velocity
profiles were typically calculated at 10° intervals in g,
with intermediate values being found by polynomial in-
terpolation. The shapes obtained in this way were com-
pared with those obtained in the full 2D simulations for
a range of experimental parameters and found to be in
good agreement. Examples will be shown in the next
section.

V. RESULTS

We have solved the 2D Eq. (3) for the case of a small
down domain in an up environment, growing in an ap-
plied electric field. The system is well behaved, in the
sense that the asymptotic form of the growing domain
does not depend on its initial shape. For any given set
of physical parameters, both polygonal and elliptical do-
main nuclei with either smooth or rough boundaries all
evolve within a few characteristic times 7 to the same
smooth, generally elongated shape.

Assigning different values of the elastic constants Kr
and Kpgs to the twist and bend-splay distortions of P,
in accord with what is known of Sm-C phases, is found
to be an essential condition for generating anisotropic
growth in the y-z plane. In addition, our simulations are
the first to produce partial faceting similar to what is
observed experimentally.

Faceting in this model is a combined consequence of the
elastic anisotropy and the chevron potential. The domain
wall velocity is smaller along the layer normal Z than
along the layers themselves because Kr < Kpgg. The
chevron binding term introduces an energy barrier that
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further slows down wall motion, causing a pronounced
cusp in the velocity diagram at 8 = 90° that is in turn
responsible for faceting. There are no facets in the ab-
sence of the chevron term. Figure 6 shows examples of
domain shapes and velocity profiles for different values
of the elastic constants and chevron potential.

The evolution of the system depends in a complex way
on applied field strength F, the elastic constants K7 and
Kpgg, and the chevron anchoring strength v4. By varying
the values of Kr/Kps and A4 we have established the
phase diagram for domain growth in chevron SSFLCs

40E.,...‘.\.,,....”..,..m....,....,,..E FTTT T I T Y
30F 1 E
E ' '
2 20f 1 F E
NoE - E
10f
0 10 20 30 40 0 10 20 30 40

y (um) y (um)
G A A A A
—~ 2f i F =
S r 1 E ]
N o-2F 1 F E
'4iuxl.x.l...ll..l...|H.T: :T.H|...|...|,..t...|.uf
6 -4 -2 0 2 4 6 -6 -4 -2 0 2 4 6

y (a. u.) y (a. u.)

(a) (b)

FIG. 6. Ferroelectric domain shapes in 2D. The figure
shows normal velocity profiles v(3) and steady-state do-
main shapes for two different ratios of the elastic constants,
Kr/Kps =3/5 (M) and Kr/Kgs = 1/5 (e). The upper pair
of domain shapes is the result of full 2D simulations, while
the lower pair is computed (in arbitrary units) from the 1D
velocity profiles v(3) assuming the domains are initially cir-
cular (dashed curves). For the trivial case when the elastic
constants are equal, the domain shape and velocity profile are
perfectly circular. The velocities are in pm/ms, and the 2D
contours are plotted for ¢ = 1, 1.5, and 2 radians.
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shown in Fig. 7. We can identify three distinct regions
of parameter space in this diagram.

(1) In moderate electric fields (region B), there is
anisotropic domain growth mediated by the motion of
solitonlike domain walls. The sides of the domains (par-
allel to the smectic layers) are well-defined facets. The
domains grow equally fast along +y and —§ and have
rounded ends. The domain shape varies from elliptical
to cigar shaped.

(2) In large electric fields (region A), the ferroelectric
coupling is big enough to overcome the chevron energy
barrier everywhere in the sample. While there is initially
some identifiable wall motion at the domain boundary,
the surrounding up region reorients in a homogeneous
manner at the same time and the entire sample is soon
switched to the down state, with no remaining trace of
any domain structure.

(3) In small applied electric fields (region C), the ini-
tial domain does not grow but shrinks instead. We will
show in Sec. VI A that this is a consequence of the elas-
tic energy stored in the curved domain walls, which acts
as an effective surface tension opposing any expansion of
the domain: below a certain threshold field E;; domains
do not grow, while above Ey; they should, in principle,
grow without limit.

Applied Field
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large E

T T T T T T T

T
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FIG. 7. Model phase diagram for 2D domain growth in
chevron SSFLCs. This figure summarizes the behavior of a
down domain of initial radius R = 12 pm nucleated in a sheet
of up dipoles. In sufficiently high fields (region A), the electri-
cal torques are strong enough to overcome the chevron bind-
ing potential everywhere in the sample and the polarization
in the up region switches homogeneously. In very low fields
(region C), the electrostatic torques are overcome by elastic
torques tending to minimize the length of the domain bound-
ary, causing the domains to shrink and vanish. At intermedi-
ate field values, the steady-state domain shape becomes more
elongated as the elastic constants are made more anisotropic,
and more faceted as the chevron potential strength v,/ is
increased. The dashed line at the B-C boundary is intended
as a guide to the eye. The error bars for the A-B boundary
would be smaller than the plotted symbols.
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As an alternative to performing full-blown numeri-
cal simulations in 2D, we have also constructed domain
shapes from the 1D velocity profile as explained in Sec. IV
above. These shapes are in good qualitative agreement
with the 2D results, as can be seen in Fig. 6.

In addition, we have solved Eq. (4) to find the 1D
domain wall velocity as a function of applied field (the
other model parameters being held fixed). The results
are plotted in Fig. 8, which shows that this dependence
is approximately linear (v, o E), in agreement with the
measurements of Handschy and Clark [6] and Xue and
Clark [7]. This result is markedly different from the case
of a 1D damped sine-Gordon wave propagating between
¢ = 0 and ¢ = 7, where the wave speed c* « VE [15].
The inclusion of the chevron binding potential in Eq. (1)
thus has a fundamental effect on the speed of solitary
waves. We are not aware of any analytical predictions
of the wave speed for this particular variant of the sine-
Gordon equation.

Although the velocity dependence in Fig. 8 is propor-
tional to £ on the average, it is clear that the curve
has two distinct regions: below a critical field E. ~
0.25 V/pm, the dependence is strictly linear (v, o« E),
while above E. it is not. The two regions of Fig. 8
arise mechanically because of how the effective chevron
torque is evaluated in the simulations. As we explained
in Sec. III, the chevron potential effectively acts over a
distance £ above the chevron interface. For moderate and
large applied fields, we set £ = ¢ = (Kps/PE)'/?, the
electric field correlation length. At fields below the crit-
ical value E. = 4Kpgg/(d?P), we have ¢ > d/2 and so
we need to impose a physical cutoff at £ = d/2 for all
E < E.. Thus the chevron potential acts in a kind of
virtual slab which has fixed thickness below E. and ever
decreasing thickness above E.. For E > E., the calcu-
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FIG. 8. Plot showing the velocity vy of a planar chevron
domain wall as a function of applied electric field strength
E. The dependence is approximately linear (v. o« E). The
dashed line delineates the field strength for which £ = d/2, as
discussed in the text. Logarithmic axes are used to distinguish
more clearly the low and high field regions.
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lated velocity curve is superlinear. We note that in the
data of Xue and Clark [7] there are also indications of
curve steepening with increasing F, although the spar-
sity of their experimental data points makes a systematic
comparison difficult.

Finally, we point out that the 1D simulations can only
be used to reproduce part of the 2D phase diagram of
Fig. 7. This is because while there is a critical field above
which a 1D solitary wave will collapse, just as in the 2D
case, there is no mimimum field for growth in 1D: the
electrical potential energy of the system is lowered in
both 1D and 2D if the field-favored region grows, but
since there is no curvature in 1D there is no surface-
tension-like term analogous to the 2D case to counteract
this growth when the applied field is sufficiently weak.

VI. DISCUSSION

In this section we discuss the applicability of our sim-
ulation results to switching in real SSFLC cells. The
basic experimental observation is that electric field re-
versal nucleates many domains (although not necessarily
all at the same time) which grow independently until
they collide and coalesce. The morphology of these do-
mains has several main features: (1) The domains are
anisotropic, being elongated along the smectic layer di-
rection and having flat or lightly rounded sides; (2) the
back and front of the domains look different and grow
with different speeds; they may also be faceted; (3) as the
driving voltage is increased, the front-back asymmetry of
the domains is reduced and they become more elliptical
in shape.

In our simulations we have considered the growth of a
single domain from an isolated nucleus. By introducing
anisotropy in the elastic constants, domain growth is seen
to occur more rapidly along the layers than perpendicular
to them. Including a chevron binding potential leads to
a flattening of the sides of the domain. However, there is
evidently nothing in the present model to cause faceting
or asymmetric growth in the layer direction.

Indeed, there is no obvious structural asymmetry of
the Sm-C director field itself as derived from a purely
elasto-electric free energy that breaks reflection symme-
try. Essentially, only terms linear in V¢ (or in y or
z) that appear in the equation of motion could produce
asymmetric domains. Flexoelectric terms, which would
qualify in principle, are estimated to be negligibly small
[7]. The linear gradients describing spontaneous twist
and bend of the ferroelectric polarization that appear in
the full free-energy expression of FLCs [8] do not appear
explicitly in the Euler-Lagrange equation (since they are
boundary terms) and do not therefore affect the dynam-
ics of reorientation.

There is an inherent asymmetry in the layering due
to the chevron structure that may cause some difference
in growth rates along the layer normal: the side of boat
domains that grows toward the chevron apex is observed
in some experiments to be shorter than the other side
[7].- The observed front-back domain asymmetry, on the
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other hand, could result from the coupling of the direc-
tor reorientation to flow, as proposed by Xue and Clark
[7]. Preliminary calculations suggest that the inclusion of
hydrodynamic effects would indeed introduce terms with
the “correct” asymmetry into the equation of motion,
and that such terms would tend to be more important at
low fields [21]. This would be consistent with the obser-
vation that boat domains do become more symmetric in
higher fields.

A. Domain collapse in zero fleld

Our simulations do reproduce, at least qualitatively,
several features of SSFLC switching observed experimen-
tally. For example, the computed velocity of domain
walls is found to be proportional to E, as was discussed
earlier. Experiments show that when domain growth is
rapid the domain form is polygonal: if the applied field is
then reduced so that the growth becomes slow (or stops
completely) then the domains become rounded. If the
field is reduced further, some domains (typically those
below a certain size) will shrink and vanish. By compar-
ison, computer simulations of domain dynamics confirm
that domains of any size become rounded and shrink to
nothing in the absence of an electric field, as illustrated in
Fig. 9. While initially circular domains retain their form
during this process, a domain in the form of a faceted
ellipse shrinks anisotropically: when the field is first re-
moved the domain shrinks primarily along its length (i.e.,
parallel to the smectic layers); only once the faceted sides
have disappeared and the domain form is approximately
elliptical does the domain start shrinking in the layer-
normal direction as well. It is evident from Fig. 9 that,
aside from an initial transient in the dynamics of the
diamond-shaped domain, the domains all shrink linearly
in time, at a rate that is independent of starting shape
or size.

This time dependence may be estimated analytically
for the case of a circular domain with isotropic elastic-
ity K. If we ignore the effects of the chevron binding
potential, then the rate at which the domain shrinks is
governed by the balance of the release of elastic energy
and viscous dissipation.

We consider a domain of radius R and wall width w,
as shown in Fig. 10, shrinking at a steady rate. The po-
larization azimuth is assumed to be uniform everywhere
except in the wall, where it changes linearly through an
amount A¢ = ¢ — ¢;. Since the viscous torque density
is I' = n¢: [cf. Eq. (2)], the rate of energy absorbed in
the wall (per unit height) is

dW _ [neéi ,. [ nd}
= dA_/ YtarRdR.

Since the time derivative can be expressed as

_ d¢dR _ :
b= T2 = (VR

the integral can be written as
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2 .
d_W = / MRzgﬂ-R dR
dt 2
=~ gZW(VqS)szRw,

where we have assumed w < R. If we equate this quan-
tity to the elastic energy released per unit time as the
domain contracts, we have

—%(V¢)2w2ﬂ'}? = gZW(V@ZRZRw,

which simplifies to

This means that the area changes as

dA _ 2nK

dt 7
That is, the area of a circular domain decreases linearly
in time. Interestingly, our simulations indicate that even
initially cigar- or diamond-shaped domains acted on by
the chevron binding potential also shrink linearly.

B. Domain stability in a stepped field

A fundamental question arising from experimental ob-
servations concerns the stability of domains of particular
size in a given electric field: do they grow or shrink? Sus-
tained domain growth over some time is clearly necessary
to “latch” the SSFLC into a new polarization state. Al-
though the general case of anisotropic chevron domains
in arbitrarily varying electric fields is probably best dealt
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FIG. 9. Plot showing the area of domains vs time in the
absence of applied field. The evolution is shown for three dif-
ferent starting shapes. These are, from top to bottom, (a) a
steady-state faceted ellipse obtained in an applied field; (b)
a circular domain; and (c) a diamond-shaped domain. The
inset figures show the shapes at selected times for (a) and
(c). The initial evolution of the diamond-shaped domain is
relatively rapid, presumably because of the high energy asso-
ciated with its sharp corners. For all three starting shapes,
the dependence at long times is linear, i.e., A &< —t.
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FIG. 10. Schematic diagram showing idealized circular do-
main structure used in effective surface tension calculation.
The domain has radius R and wall width w. The polariza-
tion field inside the domain is down (¢ = ¢,), outside it is up
(¢ = ¢2), and in the wall it changes linearly with a gradient
Ad/w.

with numerically, we can perform a stability analysis an-
alytically for the simpler case of an idealized circular do-
main with isotropic elasticity K and an F field changing
in a stepwise manner. The domain has radius R and wall
width w, as before.

In general, the width of a domain wall is a function
of applied field. In the case of a straight (1D) domain
boundary, the wall becomes narrower with increasing F
field, and broadens when the field is reduced, the width
varying as w « €. In the absence of the chevron potential,
if the field were removed the wall would expand as much
as possible to reduce its elastic energy [(V@)2dz. The
chevron term acts to limit the broadening because this
process distributes molecules which are in unfavorable
chevron orientations over a greater distance, raising the
potential energy of the system. The equilibrium wall
width is one that balances the elastic and chevron en-
ergy contributions.

We now consider the stability of a circular domain
when the applied field strength is changed rapidly to a
different value, as may be the case when a SSFLC is
switched by short voltage pulses. Our analysis assumes
that changes in wall width can initially be neglected.
This theory cannot make detailed predictions about the
behavior at longer times, or what happens if the field is
changed slowly.

For the sake of clarity, we initially omit the chevron
binding potential, and calculate the energy increase (per
unit height) dW when the domain radius increases from
R to R+ dR. This is

K

dw = ?(V¢)227rw dR — PE cos(¢) 27(2R + w) dR .

(8)
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We see from the form of this equation that the Frank elas-
ticity of the curved domain wall resists domain growth
in the manner of a line tension of effective strength
vef = K(V$)2/(2wR). Since veq falls off as 1/R, we
would expect the elasticity to dominate the response of
small domains, but become less important as R gets
large. The energy vs R curve is parabolic, with a maxi-
mum at

- (S )E o

R,,, thus corresponds to a condition of unstable equilib-
rium.

Now consider a domain of radius R undergoing steady
growth in a field Ey, i.e., R > R, (Eg). At time t; the
field is reduced rapidly to E;. The new turning point
immediately after field reduction is

Eo ) §§ (V¢)? Wo

/ _ —_—
RM(EI) - Rm(EO) + (E1 1 2 COS¢1 2 ’

(10)

where £, = (K/PE,)'/? is the field correlation length
that determined the original domain shape. After the
domain wall has readjusted its width from w¢ to w; the
critical radius increases somewhat, and is given by

B (VP )

11
E]_ 2 cos ¢1 2 ( )

Rm(Ey) = <

Whether the domain now shrinks or continues to grow
depends on the relative magnitudes of R and R,,(E;). If
R < R,,(wg) then the domain will definitely shrink and
disappear. If, on the other hand, R > R,,(w;) then the
domain will continue to grow. The behavior for inter-
mediate values of R is difficult to predict. The stability
conditions are sketched in Fig. 11.

The chevron potential —(y4cosx)/£ introduced in
Sec. III needs, to first order, only be considered in the
wall region, the displacements from equilibrium in the
rest of the sample being small in moderate electric fields.
The additional contribution to the wall energy has the
form

W, = --211-1211;1 / [Co + C;sin ¢ — C, sin? ¢] dR ,

where Cy = cos 28 cos? 1o + sin® 1y, C; = sin 28 sin 240,
and C; = —(cos28 + 1)sin®o. After integration this
yields

1
W, = —ZWR% [C’ow - % (2C’1 cos ¢
C,

Y (12)

(A + sin 2¢1))] .

We note that this corresponds to the area contained be-
low the potential barrier at ¢ = 7 /2 shown in Fig. 4,
so that W, > 0. The change in this energy when R in-
creases to R+dR can be found by a trivial differentiation
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FIG. 11. Stability diagrams for circular domains. Parabola
(a) describes the energy of a domain in a field Ey as a function
of radius R: if R > R;n(Eo) then the domain grows without
limit. At time t; the field is suddenly reduced to E}, giving
the new potential shown as curve (b). If R > R, (F;) then
the domain will continue to grow, otherwise it will shrink.
For example, a domain with initial radius R = Ry will grow
while one with R = R_ will shrink. The axes are scaled in
arbitrary units.

of this equation to be dW, = (W, /R)dR. The complete
energy differential is now [cf. Eq. (8)]
aw = %(V(ﬁ)szwdR — PE cos(¢)27n (2R + w)dR
+dW,

and the energy maximum is now at [cf. Eq. (10)]

h (B8O . 1 W\w
™7 \E; 2 cos¢ PFEcos¢; R

5

This critical radius is therefore somewhat higher than
without the chevron term, i.e., higher fields are now nec-
essary to ensure the continued growth of a given domain.

By varying the size of the initial nucleus, we have nu-
merically determined the threshold field for growth as a
function of domain radius using the full 2D model. The
results, shown in Fig. 12, have the functional dependence
predicted by Eq. (9). Corresponding experimental data
have not yet been obtained and it remains to be estab-
lished whether there is in fact an observable threshold
field for domain growth (as distinct to domain nucle-
ation) in chevron SSFLCs.

C. Domain nucleation dynamics

Finally, we address the question of how our numerical
simulations, in addition to lending basic insight into the
mechanisms of chevron SSFLC switching, can be used
to help predict the electro-optic response of these cells.
Since the optical transmission is a macroscopic property
averaged in general over many domains, a calculation of
the electro-optic response requires models for both the
nucleation dynamics (density and rate) and the growth
rate (area vs time) of individual domains. The long-time
dynamics are complicated by the fact that many domains
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FIG. 12. Plot showing the threshold field for domain

growth vs radius. The solid curve is a fit of the form
R = (a/Ewn — b) [cf. Eq. (9)].

are generated during a typical switching event, so that
collisions with neighboring domains occur and must be
accounted for.

The nucleation dynamics have been discussed by
Handschy and Clark [6], and Orihara and co-workers [12],
and by Xue and Clark [7], who found that the experimen-
tal data can be fitted for the case of homogeneous nu-
cleation by an Avrami law, with the fractional area with
down polarization increasing as A/Ag = 1—exp[—(t1 —t)]
[12].
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VII. CONCLUSION

In practice, comparisons of the model growth dynamics
with experiments on SSFLC are complicated by inhomo-
geneities which occur in real cells, such as irregularities
caused by spacer particles, layering defects (such as zig-
zag walls and boat wakes), and chemicophysical varia-
tions of the cell surfaces (such as rubbing and impurity
effects). These may act to change the threshold voltages
for domain nucleation and growth unpredictably, or serve
as pinning sites impeding growth. For example, the ex-
perimental observation mentioned above, that some do-
mains do not disappear when the field applied to the cell
is reduced to zero, is behavior not explicitly accounted
for by our model.

Nevertheless, a systematic comparison of experimental
and numerical data should enable the determination of
some physical parameters. For example, an inversion of
the Wulff construction should yield the ratio of the Frank
elastic constants. Measurements of threshold fields and
switching times may yield an estimate of the chevron
binding energy, v4.
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FIG. 1. Geometry of chevron SSFLC cell. The smectic lay-
ers are tilted an angle +6 from the cell normal, the change
in their orientation typically occurring near the middle of
the cell. The orientational binding potential at this planar
chevron interface stabilizes two polarization states P, up and
down. The corresponding director orientations are indicated
in the lower part of the figure by the filled circles (o) and their
projections onto the smectic layer planes by the ¢ director (c).
A generic polygonal domain is shown growing at the chevron
interface.
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FIG. 10. Schematic diagram showing idealized circular do-
main structure used in effective surface tension calculation.
The domain has radius R and wall width w. The polariza-
tion field inside the domain is down (¢ = ¢1), outside it is up
(¢ = ¢2), and in the wall it changes linearly with a gradient
A¢/w.



FIG. 2. Domain shapes in chevron SSFLC cells: (a)
low-voltage switching in a 4 pm cell of the Merck material
ZLI-3654. The domains are boat shaped, with gently rounded
sides. The applied voltage is about 20 mV. (b) High-voltage
switching in a 2 pum cell of the Displaytech mixture W7-W82.
The picture, taken stroboscopically, shows rather symmet-
ric domains growing about 3 ms after a field reversal. The
applied voltage is 12 V. The layer normal is in both cases
approximately vertical.



vy (B)

'3
z V(8)
l2 r
ty
0 p .
o y

FIG. 5. Geometry of domain shape calculations. Part of
a curved domain wall #(6) is shown at different times t,, ¢z,
and t3. The radial domain wall velocity v(@) is constant for a
given 6. The local orientation of the domain wall along any
radius vector is also constant in time so that the growth is
self-similar. The construction relates the radial velocity to
the normal component of the velocity v (3), the latter being
equal to the velocity of an infinite planar wall with the same
orientation. The lower part of the figure shows a hypothetical
five-sided boat domain growing in self-similar fashion: the
pointed bow moves fastest and is furthest from the “origin”

o.



